Coupled Heterogeneous Tucker Decomposition: A Feature Extraction Method for Multisource Fusion and Domain Adaptation Using Multisource Heterogeneous Remote Sensing Data

Author:

Gao Tong,Chen Hao,Lu Junhong

Abstract

To excavate adequately the rich information contained in multisource remote sensing data, feature extraction as basic yet important research has two typical applications: one of which is to extract complementary information of multisource data to improve classification; and the other is to extract shared information across sources for domain adaptation. However, typical feature extraction methods require the input represented as vectors or homogeneous tensors and fail to process multisource data represented as heterogeneous tensors. Therefore, the coupled heterogeneous Tucker decomposition (C-HTD) containing two sub-methods, namely coupled factor matrix-based HTD (CFM-HTD) and coupled core tensor-based HTD (CCT-HTD), is proposed to establish a unified feature extraction framework for multisource fusion and domain adaptation. To handle multisource heterogeneous tensors, multiple Tucker models were constructed to extract features of different sources separately. To cope with the supervised and semi-supervised cases, the class-indicator factor matrix was built to enhance the separability of features using known labels and learned labels. To mine the complementarity of paired multisource samples, coupling constraint was imposed on multiple factor matrices to form CFM-HTD to extract multisource information jointly. To extract domain-adapted features, coupling constraint was imposed on multiple core tensors to form CCT-HTD to encourage data from different sources to have the same class centroid. In addition, to reduce the impact of interference samples on domain adaptation, an adaptive sample-weighting matrix was designed to autonomously remove outliers. Using multiresolution multiangle optical and MSTAR datasets, experimental results show that the C-HTD outperforms typical multisource fusion and domain adaptation methods.

Funder

Natural Science Foundation of Heilongjiang Province

National Key Laboratory of Science and Technology on Remote Sensing Information and Image Analysis Foundation Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3