Water Deficit May Cause Vegetation Browning in Central Asia

Author:

Hao Haichao,Chen Yaning,Xu JianhuaORCID,Li Zhi,Li Yupeng,Kayumba Patient Mindje

Abstract

There is consistent evidence of vegetation greening in Central Asia over the past four decades. However, in the early 1990s, the greening temporarily stagnated and even for a time reversed. In this study, we evaluate changes in the normalized difference vegetation index (NDVI) based on the long-term satellite-derived remote sensing data systems of the Global Inventory Modelling and Mapping Studies (GIMMS) NDVI from 1981 to 2013 and MODIS NDVI from 2000 to 2020 to determine whether the vegetation in Central Asia has browned. Our findings indicate that the seasonal sequence of NDVI is summer > spring > autumn > winter, and the spatial distribution pattern is a semicircular distribution, with the Aral Sea Basin as its core and an upward tendency from inside to outside. Around the mid-1990s, the region’s vegetation experienced two climatic environments with opposing trends (cold and wet; dry and hot). Prior to 1994, NDVI increased substantially throughout the growth phase (April–October), but this trend reversed after 1994, when vegetation began to brown. Our findings suggest that changes in vegetation NDVI are linked to climate change induced by increased CO2. The state of water deficit caused by temperature changes is a major cause of the browning turning point across the study area. At the same time, changes in vegetation NDVI were consistent with changes in drought degree (PDSI). This research is relevant for monitoring vegetation NDVI and carbon neutralization in Central Asian ecosystems.

Funder

the National Natural Science Foundation of China

the Key Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3