Abstract
Recovering height information from a single aerial image is a key problem in the fields of computer vision and remote sensing. At present, supervised learning methods have achieved impressive results, but, due to domain bias, the trained model cannot be directly applied to a new scene. In this paper, we propose a novel semi-supervised framework, StyHighNet, for accurately estimating the height of a single aerial image in a new city that requires only a small number of labeled data. The core is to transfer multi-source images to a unified style, making the unlabeled data provide the appearance distribution as additional supervision signals. The framework mainly contains three sub-networks: (1) the style transferring sub-network maps multi-source images into unified style distribution maps (USDMs); (2) the height regression sub-network, with the function of predicting the height maps from USDMs; and (3) the style discrimination sub-network, used to distinguish the sources of USDMs. Among them, the style transferring sub-network shoulders dual responsibilities: On the one hand, it needs to compute USDMs with obvious characteristics, so that the height regression sub-network can accurately estimate the height maps. On the other hand, it is necessary that the USDMs have consistent distribution to confuse the style discrimination sub-network, so as to achieve the goal of domain adaptation. Unlike previous methods, our style distribution function is learned unsupervised, thus it is of greater flexibility and better accuracy. Furthermore, when the style discrimination sub-network is shielded, this framework can also be used for supervised learning. We performed qualitatively and quantitative evaluations on two sets of public data, Vaihingen and Potsdam. Experiments show that the framework achieved superior performance in both supervised and semi-supervised learning modes.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference67 articles.
1. Fusion of LIDAR data and optical imagery for building modeling;Chen;Int. Arch. Photogramm. Remote Sens.,2004
2. Approaches to large-scale urban modeling;Hu;IEEE Comput. Graph. Appl.,2003
3. Image-based 3D scene reconstruction and exploration in augmented reality
4. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments
5. IM2HEIGHT: Height estimation from single monocular imagery via fully residual convolutional-deconvolutional network;Mou;arXiv,2018
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献