StyHighNet: Semi-Supervised Learning Height Estimation from a Single Aerial Image via Unified Style Transferring

Author:

Gao QianORCID,Shen Xukun

Abstract

Recovering height information from a single aerial image is a key problem in the fields of computer vision and remote sensing. At present, supervised learning methods have achieved impressive results, but, due to domain bias, the trained model cannot be directly applied to a new scene. In this paper, we propose a novel semi-supervised framework, StyHighNet, for accurately estimating the height of a single aerial image in a new city that requires only a small number of labeled data. The core is to transfer multi-source images to a unified style, making the unlabeled data provide the appearance distribution as additional supervision signals. The framework mainly contains three sub-networks: (1) the style transferring sub-network maps multi-source images into unified style distribution maps (USDMs); (2) the height regression sub-network, with the function of predicting the height maps from USDMs; and (3) the style discrimination sub-network, used to distinguish the sources of USDMs. Among them, the style transferring sub-network shoulders dual responsibilities: On the one hand, it needs to compute USDMs with obvious characteristics, so that the height regression sub-network can accurately estimate the height maps. On the other hand, it is necessary that the USDMs have consistent distribution to confuse the style discrimination sub-network, so as to achieve the goal of domain adaptation. Unlike previous methods, our style distribution function is learned unsupervised, thus it is of greater flexibility and better accuracy. Furthermore, when the style discrimination sub-network is shielded, this framework can also be used for supervised learning. We performed qualitatively and quantitative evaluations on two sets of public data, Vaihingen and Potsdam. Experiments show that the framework achieved superior performance in both supervised and semi-supervised learning modes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference67 articles.

1. Fusion of LIDAR data and optical imagery for building modeling;Chen;Int. Arch. Photogramm. Remote Sens.,2004

2. Approaches to large-scale urban modeling;Hu;IEEE Comput. Graph. Appl.,2003

3. Image-based 3D scene reconstruction and exploration in augmented reality

4. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments

5. IM2HEIGHT: Height estimation from single monocular imagery via fully residual convolutional-deconvolutional network;Mou;arXiv,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3