Dual Application: p-CuS/n-ZnS Nanocomposite Construction for High-Efficiency Colorimetric Determination and Photocatalytic Degradation of Tetracycline in Water

Author:

Zhang LiORCID,Ge Linhong,Deng Lamei,Tu Xinman

Abstract

Herein, CuS was incorporated with ZnS to form a novel nanocomposite via cation exchange, and the product was then employed for dual application of the colorimetric determination and photocatalytic degradation of tetracycline (TC) in water. The formed p–n heterojunction provided an improved gap width and electron mobility, which could rapidly catalyze H2O2 to produce plenty of •OH, supporting a color conversion with TMB. Meanwhile, the addition of TC could lead to the further enhancement in colorimetric signal, and the distinction level was sensitive to the target amount. Additionally, under light conditions, the p-CuS/n-ZnS could produce •O2−, •OH, and h+ through photocatalysis, and these ions could degrade the TC via oxidation. In the colorimetric determination of TC, the signal responses were obtained within 10 min, and the detection limit was 20.94 nM. The recovery rates were 99% and 106% for the water samples from Ganjiang river. In the photocatalytic degradation, the TC was degraded by 91% within 120 min, which was threefold that of ZnS. Meanwhile, the morphology feature of the p-CuS/n-ZnS remained after multiple uses, suggesting a favorable material stability. This strategy provides application prospects for the monitoring and control of antibiotics in water.

Funder

National Natural Science Foundation of China

Key Project of Jiangxi Provincial Natural Science Foundation

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3