A Comparative Study of the Band-Edge Exciton Fine Structure in Zinc Blende and Wurtzite CdSe Nanocrystals

Author:

Golovatenko Aleksandr A.ORCID,Kalitukha Ina V.ORCID,Dimitriev Grigorii S.ORCID,Sapega Victor F.ORCID,Rakhlin Maxim V.ORCID,Galimov Aidar I.ORCID,Shubina Tatiana V.ORCID,Shornikova Elena V.ORCID,Qiang GangORCID,Yakovlev Dmitri R.ORCID,Bayer ManfredORCID,Biermann Amelie,Hoffmann AxelORCID,Aubert TangiORCID,Hens ZegerORCID,Rodina Anna V.ORCID

Abstract

In this paper, we studied the role of the crystal structure in spheroidal CdSe nanocrystals on the band-edge exciton fine structure. Ensembles of zinc blende and wurtzite CdSe nanocrystals are investigated experimentally by two optical techniques: fluorescence line narrowing (FLN) and time-resolved photoluminescence. We argue that the zero-phonon line evaluated by the FLN technique gives the ensemble-averaged energy splitting between the lowest bright and dark exciton states, while the activation energy from the temperature-dependent photoluminescence decay is smaller and corresponds to the energy of an acoustic phonon. The energy splittings between the bright and dark exciton states determined using the FLN technique are found to be the same for zinc blende and wurtzite CdSe nanocrystals. Within the effective mass approximation, we develop a theoretical model considering the following factors: (i) influence of the nanocrystal shape on the bright–dark exciton splitting and the oscillator strength of the bright exciton, and (ii) shape dispersion in the ensemble of the nanocrystals. We show that these two factors result in similar calculated zero-phonon lines in zinc blende and wurtzite CdSe nanocrystals. The account of the nanocrystals shape dispersion allows us to evaluate the linewidth of the zero-phonon line.

Funder

Russian Science Foundation

Russian Foundation for Basic Research

International Collaborative Research Center TRR 160

FWO-Vlaanderen

DFG

Council for Grants of the President of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference48 articles.

1. Quantum size effect in three–dimensional microscopic semiconductor crystals;Ekimov;JETP Lett.,1981

2. Interband absorption of light in a semiconductor sphere;Efros;Sov. Phys. Semicond.,1982

3. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependance of the low-est excited electronic state;Brus;J. Chem. Phys.,1984

4. Semiconductor quantum dots: Technological progress and future challenges;Talapin;Science,2021

5. Bridging two worlds: Colloidal versus epitaxial quantum dots;Bayer;Ann. Phys.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Angular Momentum Fine Structure in InP/ZnSe Quantum Dots;The Journal of Physical Chemistry Letters;2024-06-07

2. Positive Trions in InP/ZnSe/ZnS Colloidal Nanocrystals;ACS Nano;2024-03-18

3. Theory of Photoluminescence Spectral Line Shapes of Semiconductor Nanocrystals;The Journal of Physical Chemistry Letters;2023-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3