Abstract
Copper-based nanoparticles have been intensively studied owing to their superior antibacterial activity. In this study, cuprous oxide (Cu2O) nanoparticles were synthesized using two different methods. In particular, two methods for synthesizing copper oxide from NaOH, namely, with and without the addition of NH3, were used to adjust the morphology of the nanoparticles. The nanoparticles from the NH3 and NaOH samples possessed an octahedral morphology. The crystal structure of the samples was confirmed by X-ray diffraction. The size distribution of the NH3 sample was narrower than that of the NaOH sample. Furthermore, the average size of the NH3 sample was smaller than that of the NaOH sample. Unexpectedly, the antibacterial activity of the NH3 sample was found to be lower than that of the NaOH sample. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy revealed that the adsorbed NH3 caused the surface oxidation of Cu2O nanoparticles with azide (N3) formation on surface.
Funder
Korea Institute of Industrial Technology
Subject
General Materials Science,General Chemical Engineering