Conducting Electrospun Nanofibres: Monitoring of Iodine Doping of P3HT through Infrared (IRAV) and Raman (RaAV) Polaron Spectroscopic Features

Author:

Arrigoni AlessiaORCID,Brambilla LuigiORCID,Castiglioni ChiaraORCID,Bertarelli Chiara

Abstract

Aligned polymer nanofibres are prepared by means of the electrospinning of a chlorobenzene solution containing regioregular poly(3-hexyltiophene-2,5-diyl), P3HT, and poly(ethylene oxide), PEO. The PEO scaffold is easily dissolved with acetonitrile, leaving pure P3HT fibres, which do not show structural modification. Polymer fibres, either with or without the PEO supporting polymer, are effectively doped by exposure to iodine vapours. Doping is monitored following the changes in the doping-induced vibrational bands (IRAVs) observed in the infrared spectra and by means of Raman spectroscopy. Molecular orientation inside the fibres has been assessed by means of IR experiments in polarised light, clearly demonstrating that electrospinning induces the orientation of the polymer chains along the fibre axis as well as of the defects introduced by doping. This work illustrates a case study that contributes to the fundamental knowledge of the vibrational properties of the doping-induced defects—charged polarons—of P3HT. Moreover, it provides experimental protocols for a thorough spectroscopic characterisation of the P3HT nanofibres, and of doped conjugated polymers in general, opening the way for the control of the material structure when the doped polymer is confined in a one-dimensional architecture.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference86 articles.

1. Skotheim, T.A. (1986). Handbook of Conducting Polymers, Dekker.

2. Electron Transporting Semiconducting Polymers in Organic Electronics;Zhao;Chem. Soc. Rev.,2011

3. Chemical Doping of Organic Semiconductors for Thermoelectric Applications;Zhao;Chem. Soc. Rev.,2020

4. Doped Organic Transistors;Keum;Chem. Rev.,2016

5. Polythiophene: From Fundamental Perspectives to Applications;Kaloni;Chem. Mater.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3