Abstract
The optical method of spin dynamics measurements via the detection of various magneto-optical effects is widely used nowadays. Besides it being a convenient method to achieve time-resolved measurements, its spatial resolution in the lateral direction is limited by a diffraction limit for the probe light. We propose a novel approach utilizing a Mie-resonance-based all-dielectric metasurface that allows for the extraction of a signal of a single submicron-wavelength spin wave from the wide spin precession spectra. This approach is based on the possibility of designing a metasurface that possesses nonuniform magneto-optical sensitivity to the different nanoscale regions of the smooth magnetic film due to the excitation of the Mie modes. The metasurface is tuned to be unsensitive to the long-wavelength spin precession, which is achieved by the optical resonance-caused zeroing of the magneto-optical effect for uniform magnetization in the vicinity of the resonance. At the same time, such a Mie-supporting metasurface exhibits selective sensitivity to a narrow range of short wavelengths equal to its period.
Funder
Russian Science Foundation
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Magneto-Optics and Optomagnetism in Nanostructures;Bulletin of the Lebedev Physics Institute;2023-12-29