Synthesis of CuO/GO-DE Catalyst and Its Catalytic Properties and Mechanism on Ciprofloxacin Degradation

Author:

Zhang TingORCID,Zhang Jingjing,Yu Yinghao,Li Jinxu,Zhou Zhifang,Li Chunlei

Abstract

A new catalyst, copper oxide/graphene oxide–diatomaceous earth (CuO/GO-DE), was prepared by the ultrasonic impregnation method. The optimal conditions for catalyst preparation were explored, and its structure and morphology were characterized by BET, XRD, SEM, TEM, FTIR, Raman and XPS. By taking ciprofloxacin as the target pollutant, the performance and reusability of CuO/GO-DE to degrade antibiotic wastewater was evaluated, and the optimal operating conditions were obtained. The main oxidizing substances in the catalytic system under different pH conditions were analyzed, as well as the synergistic catalytic oxidation mechanism. The intermediate products of ciprofloxacin degradation were identified by LC-MS, and the possible degradation process of ciprofloxacin was proposed.

Funder

Major Science and Technology Projects in Gansu Province of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3