Stabilization of an Aqueous Bio-Based Wax Nano-Emulsion through Encapsulation

Author:

Samyn PieterORCID,Rastogi Vibhore K.ORCID

Abstract

The emulsification of biowaxes in an aqueous environment is important to broaden their application range and make them suitable for incorporation in water-based systems. The study here presented proposes a method for emulsification of carnauba wax by an in-situ imidization reaction of ammonolysed styrene (maleic anhydride), resulting in the encapsulation of the wax into stabilized organic nanoparticles. A parameter study is presented on the influences of wax concentrations (30 to 80 wt.-%) and variation in reaction conditions (degree of imidization) on the stability and morphology of the nanoparticles. Similar studies are done for encapsulation and emulsification of paraffin wax as a reference material. An analytical analysis with Raman spectroscopy and infrared spectroscopy indicated different reactivity of the waxes towards encapsulation, with the bio-based carnauba wax showing better compatibility with the formation of imidized styrene (maleic anhydride) nanoparticles. The latter can be ascribed to the higher functionality of the carnauba wax inducing more interactions with the organic nanoparticle phase compared to paraffin wax. In parallel, the thermal and mechanical stability of nanoparticles with encapsulated carnauba wax is higher than paraffin wax, as studied by differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical analysis. In conclusion, a stable aqueous emulsion with a maximum of 70 wt.-% encapsulated carnauba wax was obtained, being distributed as a droplet phase in 200 nm organic nanoparticles.

Funder

Robert Bosch Foundation

Ministry for Education of Baden Württemberg

Flemish Agency for Innovation and Entrepreneurship

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference60 articles.

1. A review of recent development of sustainable waxes derived from vegetable oils;Fei;Curr. Opin. Food Sci.,2017

2. Composition of plant cuticular waxes, Ann;Jetter;Plant Rev.,2018

3. A toolbox for the characterization of biobased waxes, Eur;Floros;J. Lip. Sci. Technol.,2016

4. Characterization of the composition of paraffin waxes on industrial applications;Palou;Energy Fuels,2014

5. Properties of paraffin waxes;Turner;Ind. Eng. Chem.,1955

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3