Self-Powered Nitrogen Dioxide Sensor Based on Pd-Decorated ZnO/MoSe2 Nanocomposite Driven by Triboelectric Nanogenerator

Author:

Wang Weiwei,Wang Dongyue,Zhang Xixi,Yang Chunqing,Zhang DongzhiORCID

Abstract

This paper introduces a high-performance self-powered nitrogen dioxide gas sensor based on Pd-modified ZnO/MoSe2 nanocomposites. Poly(vinyl alcohol) (PVA) nanofibers were prepared by high-voltage electrospinning and tribological nanogenerators (TENGs) were designed. The output voltage of TENG and the performance of the generator at different frequencies were measured. The absolute value of the maximum positive and negative voltage exceeds 200 V. Then, the output voltage of a single ZnO thin-film sensor, Pd@ZnO thin-film sensor and Pd@ZnO/MoSe2 thin-film sensor was tested by using the energy generated by TENG at 5 Hz, when the thin-film sensor was exposed to 1–50 ppm NO2 gas. The experimental results showed that the sensing response of the Pd@ZnO/MoSe2 thin-film sensor was higher than that of the single ZnO film sensor and Pd@ZnO thin-film sensor. The TENG-driven response rate of the Pd@ZnO/MoSe2 sensor on exposure to 50 ppm NO2 gas was 13.8. At the same time, the sensor had good repeatability and selectivity. The synthetic Pd@ZnO/MoSe2 ternary nanocomposite was an ideal material for the NO2 sensor, with excellent structure and performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3