Surface Functionalization of Ti6Al4V-ELI Alloy with Antimicrobial Peptide Nisin

Author:

Lallukka MariORCID,Gamna Francesca,Gobbo Virginia Alessandra,Prato MirkoORCID,Najmi ZibaORCID,Cochis AndreaORCID,Rimondini LiaORCID,Ferraris SaraORCID,Spriano SilviaORCID

Abstract

Implant-associated infections are a severe global concern, especially in the case of orthopedic implants intended for long-term or permanent use. The traditional treatment through systemic antibiotic administration is often inefficient due to biofilm formation, and concerns regarding the development of highly resistant bacteria. Therefore, there is an unfulfilled need for antibiotic-free alternatives that could simultaneously support bone regeneration and prevent bacterial infection. This study aimed to perform, optimize, and characterize the surface functionalization of Ti6Al4V-ELI discs by an FDA-approved antimicrobial peptide, nisin, known to hold a broad antibacterial spectrum. Accordingly, nisin bioactivity was also evaluated by in vitro release tests both in physiological and inflammatory pH conditions. Several methods, such as X-ray photoelectron spectroscopy (XPS), and Kelvin Probe atomic force microscopy confirmed the presence of a physisorbed nisin layer on the alloy surface. The functionalization performed at pH 6–7 was found to be especially effective due to the nisin configuration exposing its hydrophobic tail outwards, which is also responsible for its antimicrobial action. In addition, the first evidence of gradual nisin release both in physiological and inflammatory conditions was obtained: the static contact angle becomes half of the starting one after 7 days of soaking on the functionalized sample, while it becomes 0° on the control samples. Finally, the evaluation of the antibacterial performance toward the pathogen Staphylococcus aureus after 24 h of inoculation showed the ability of nisin adsorbed at pH 6 to prevent bacterial microfouling into biofilm-like aggregates in comparison with the uncoated specimens: viable bacterial colonies showed a reduction of about 40% with respect to the un-functionalized surface and the formation of (microcolonies (biofilm-like aggregates) is strongly affected.

Funder

European Union

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference50 articles.

1. High-temperature titanium alloys—A review;Eylon;JOM,1984

2. Biomedical applications of titanium and its alloys;Elias;JOM,2008

3. Bone biomaterials for overcoming antimicrobial resistance: Advances in non-antibiotic antimicrobial approaches for regeneration of infected osseous tissue;Sadowska;Mater. Today,2021

4. Biomedical applications of nisin;Shin;J. Appl. Microbiol.,2016

5. Guarino, V., Iafisco, M., and Spriano, S. (2020). Nanostructured Biomaterials for Regenerative Medicine, Woodhead Publishing.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3