Abstract
Thallium(I) (Tl(I)) pollution has become a pressing environmental issue due to its harmful effect on human health and aquatic life. Effective technology to remove Tl(I) ions from drinking water can offer immediate societal benefits especially in the developing countries. In this study, a bio-adsorbent system based on nitro-oxidized nanocellulose (NOCNF) extracted from sorghum stalks was shown to be a highly effective Tl(I) removal medium. The nitro-oxidation process (NOP) is an energy-efficient, zero-waste approach that can extract nanocellulose from any lignocellulosic feedstock, where the effluent can be neutralized directly into a fertilizer without the need for post-treatment. The demonstrated NOCNF adsorbent exhibited high Tl(I) removal efficiency (>90% at concentration < 500 ppm) and high maximum removal capacity (Qm = 1898 mg/g using the Langmuir model). The Tl(I) adsorption mechanism by NOCNF was investigated by thorough characterization of NOCNF-Tl floc samples using spectroscopic (FTIR), diffraction (WAXD), microscopic (SEM, TEM, and AFM) and zeta-potential techniques. The results indicate that adsorption occurs mainly due to electrostatic attraction between cationic Tl(I) ions and anionic carboxylate groups on NOCNF, where the adsorbed Tl(I) sites become nuclei for the growth of thallium oxide nanocrystals at high Tl(I) concentrations. The mineralization process enhances the Tl(I) removal efficiency, and the mechanism is consistent with the isotherm data analysis using the Freundlich model.
Funder
National Science Foundation
Imam Mohammad Ibn Saud Islamic University
Subject
General Materials Science,General Chemical Engineering
Reference60 articles.
1. Yaqoob, A.A., Parveen, T., Umar, K., and Mohamad Ibrahim, M.N. (2020). Role of nanomaterials in the treatment of wastewater: A review. Water, 12.
2. Presence of thallium in the environment: Sources of contaminations, distribution and monitoring methods;Environ. Monit. Assess.,2016
3. Recent advances in metal decorated nanomaterials and their various biological applications: A review;Front. Chem.,2020
4. Thallium: A review of public health and environmental concerns;Environ. Int.,2005
5. Thallium in the environment and health effects;Environ. Geochem. Health,2000
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献