Strengthening and Toughening CNTs/Mg Composites by OpTimizing the Grinding Time of Magnesium Powder

Author:

Ding YunpengORCID,Zhang Yizhuang,Li Zhiyuan,Liu Changhong,Wang Hanying,Zhao Xin,Zhang Xinfang,Xu Jilei,Guo Xiaoqin

Abstract

In this paper, CNT/Mg composites with high compressive properties were prepared by using Ni-plated CNT and pure magnesium powder as raw materials through the grinding of magnesium powder, ball-milling mixing and hot-pressing sintering. The effect of grinding time for finer magnesium powder on the microstructure and properties of the final composites was studied mainly by SEM, XRD, HRTEM and compression tests. The results show that with the prolongation of milling time, the magnesium particle size decreases gradually and the CNT dispersion becomes more uniform. Moreover, the nickel layer on the surface of CNT reacts with highly active broken magnesium powder in the sintering process to generate MgNi2 intermediate alloy, which significantly improves interface bonding. The strength and fracture strain of composites are significantly increased by the combined action of the uniform distribution of CNTs and strong interface bonding from the MgNi2 phase. The compressive strength, yield strength and fracture strain of the composites, prepared with a 60 h grinding of magnesium powder, reached 268%, 272% and 279% of those in composites without the grinding of magnesium powder.

Funder

Natural Science Foundation of Henan Province, China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3