Optimal Operation of Microgrids with Demand-Side Management Based on a Combination of Genetic Algorithm and Artificial Bee Colony

Author:

Dashtdar Masoud,Flah AymenORCID,Hosseinimoghadam Seyed Mohammad Sadegh,Kotb HossamORCID,Jasińska ElżbietaORCID,Gono RadomirORCID,Leonowicz ZbigniewORCID,Jasiński MichałORCID

Abstract

An important issue in power systems is the optimal operation of microgrids with demand-side management. The implementation of demand-side management programs, on the one hand, reduces the cost of operating the power system, and on the other hand, the implementation of such programs requires financial incentive policies. In this paper, the problem of the optimal operation of microgrids along with demand-side management (DSM) is formulated as an optimization problem. Load shifting is considered an effective solution in demand-side management. The objective function of this problem is to minimize the total operating costs of the power system and the cost of load shifting, and the constraints of the problem include operating constraints and executive restrictions for load shifting. Due to the dimensions of the problem, the simultaneous combination of a genetic algorithm and an ABC is used in such a way that by solving the OPF problem with an ABC algorithm and applying it to the structure of the genetic algorithm, the main problem will be solved. Finally, the proposed method is evaluated under the influence of various factors, including the types of production units, the types of loads, the unit uncertainty, sharing with the grid, and electricity prices all based on different scenarios. To confirm the proposed method, the results were compared with different algorithms on the IEEE 33-bus network, which was able to reduce costs by 57.01%.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3