Spatial Vegetation Patch Patterns and Their Relation to Environmental Factors in the Alpine Grasslands of the Qilian Mountains

Author:

Abalori Theophilus Atio,Cao Wenxia,Weobong Conrad Atogi-Akwoa,Li Wen,Wang Shilin,Deng Xiuxia

Abstract

Globally, grasslands are affected by climate change and unsustainable management practices which usually leads to transitions from stable, degraded and then to desertification. Spatial vegetation patch configurations are regarded as key indicators of such transitions. Understanding the relationships between this grass-land vegetation and its environment is key to vegetation restoration projects. Spatial vegetation patch patterns were chosen across different soil and topographic conditions. Patch numbers, perimeter, and cover of each patch were measured along transects of each patch type. Using field surveys and multivariate statistical analysis, we investigated the differences in vegetation biomass and distribution and soil properties of four typical alpine plant species patches along with a range of environmental and topographic conditions. It was found that topographic conditions and soil properties, particularly soil moisture explained most of the variation in spatial patch vegetation characteristics and thus control vegetation restoration in the alpine grassland. The Kobresia humilis, Blysmus sinocompressus and Iris lactea patches under the drylands recorded small patch sizes, large patch numbers, low connectivity, and large total perimeter per unit area. Generally, species within the high moisture sites recorded small patch numbers, a large fraction of vegetation cover and a small total perimeter per m2. Patches in limited soil moisture areas recorded patch configurations indicating they are unstable and undergoing degradation and therefore need urgent restoration attention to forestall their further degradation and its resultant effect of desertification. These results would provide quantitative easy-to-use indicators for vegetation degradation and help in vegetation restoration projects.

Funder

The National Key Research and Development Program of China

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3