Dome Roof Fall Geohazards of Full-Seam Chamber with Ultra-Large Section in Coal Mine

Author:

Gao RuiORCID,Xia Hongchun,Fang Kun,Zhang Chunwang

Abstract

The roof fall hazard is more likely to take place within chamber with ultra-large section, which would not only damage mechanical equipment, but also cause casualties. In this paper, the strap joint chamber of the Tashan coal mine is studied, and finite and discrete element method (FDEM) is used to establish the numerical model of the roof fall of the chamber dome. The simulation results show that the chamber dome mainly undergoes shear failure and forms a large number of cracks. With further development and penetration of cracks, a distinct roof separation is found in the chamber dome. When the crack develops to the dome surface of the chamber, under the effect of the mine pressure, the coal body is separated from the surface of the chamber and the roof fall hazard occurs. Based on the mechanism of roof fall hazard of the chamber dome, it is concluded that improving the shear strength of the surrounding rock and reducing the crack penetration are the main ways to control the roof fall. Therefore, the high-strength anchor bolt and cable support is adopted to fill the cracks and improve the shear strength of the surrounding rock. The result showed that the roof separation of the chamber dome in the field is confined to 0.012 m. The surrounding rock is well controlled and no roof fall occurs.

Funder

State Key Research Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. The Basic Problems about Fully-Mechanized Top-Coal Caving System;Leng,2013

2. Analysis of Guiding Gas Outburst by Roof Fall and Top coal Caving;Zhao,2008

3. Top coal caving longwall maximizes thick seam recovery - Austar’s longwall system offers opportunities in seams thicker than 4.5 meters;Duncan;Eng. Min. J.,2007

4. DEM Study of the Drawing Law in Longwall Top-Coal Caving Mining, Computer Applications in the Minerals Industries;Fu,2001

5. Numerical Simulation of Strata Behavior in Super-Long and Large Mining Height Working Face

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3