A Novel Genetic Algorithm for the Synthetical Sensor-Weapon-Target Assignment Problem

Author:

Li XiaoyangORCID,Zhou Deyun,Yang Zhen,Pan Qian,Huang Jichuan

Abstract

The sensor-weapon–target assignment (S-WTA) problem is a crucial decision issue in C4ISR. The cooperative engagement capability (CEC) of sensors and weapons depends on the S-WTA schemes, which can greatly affect the operational effectiveness. In this paper, a mathematical model based on the synthetical framework of the S-WTA problem is established, combining the dependent and independent cooperative engagement modes of sensors and weapons. As this problem is a complex combinatorial optimization problem, a novel genetic algorithm is proposed to improve the solution of this formulated S-WTA model. Based on the prior knowledge of this problem, a problem-specific population initialization method and two novel repair operators are introduced. The performances of the proposed algorithm have been validated on the known benchmarks. Extensive experimental studies compared with three state-of-the-art approaches demonstrate that the proposed algorithm can generate better assignment schemes for the most of the benchmarks.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooperative target allocation for air-sea heterogeneous unmanned vehicles against saturation attacks;Journal of the Franklin Institute;2024-02

2. Weapon–Target Assignment Using a Whale Optimization Algorithm;International Journal of Computational Intelligence Systems;2023-04-21

3. Efficient Radar-Target Assignment in Low Probability of Intercept Radar Networks: A Machine-Learning Approach;IEEE Open Journal of the Communications Society;2023

4. Coevolution with Danger Zone Levels Strategy for the Weapon Target Assignment Problem;2022 IEEE Symposium Series on Computational Intelligence (SSCI);2022-12-04

5. Multi radar multi-target optimization assignment method based on deep reinforcement learning;2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC);2022-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3