Author:
How Meng-Leong,Hung Wei Loong David
Abstract
In science, technology, engineering, arts, and mathematics (STEAM) education, artificial intelligence (AI) analytics are useful as educational scaffolds to educe (draw out) the students’ AI-Thinking skills in the form of AI-assisted human-centric reasoning for the development of knowledge and competencies. This paper demonstrates how STEAM learners, rather than computer scientists, can use AI to predictively simulate how concrete mixture inputs might affect the output of compressive strength under different conditions (e.g., lack of water and/or cement, or different concrete compressive strengths required for art creations). To help STEAM learners envision how AI can assist them in human-centric reasoning, two AI-based approaches will be illustrated: first, a Naïve Bayes approach for supervised machine-learning of the dataset, which assumes no direct relations between the mixture components; and second, a semi-supervised Bayesian approach to machine-learn the same dataset for possible relations between the mixture components. These AI-based approaches enable controlled experiments to be conducted in-silico, where selected parameters could be held constant, while others could be changed to simulate hypothetical “what-if” scenarios. In applying AI to think discursively, AI-Thinking can be educed from the STEAM learners, thereby improving their AI literacy, which in turn enables them to ask better questions to solve problems.
Funder
National Institute of Education
Subject
Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献