Abstract
A hybrid method—coupled with the boundary element method (BEM) for wave-making resistance, the empirical method (EM) for viscous resistance, and the boundary layer theory (BLT) for capture of an area’s physical parameters—was proposed to predict waterjet propulsion performance. The waterjet propulsion iteration process was established from the force-balanced waterjet–hull system by applying the hybrid approach. Numerical validation of the present method was carried out using the 1/8.556 scale waterjet-propelled ITTC (International Towing Tank Conference) Athena ship model. Resistance, attitudes, wave cut profiles, waterjet thrust, and thrust deduction showed similar tendencies to the experimental curves and were in good agreement with the data. The application of the present hybrid method to the side-hull configuration research of a trimaran indicates that the side-hull arranged at the rear of the main hull contributed to energy-saving and high-efficiency propulsion. In addition, at high Froude numbers, the “fore-body trimaran” showed a local advantage in resistance and thrust deduction.
Funder
National and International Scientific and Technological Cooperation Special Projects of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference40 articles.
1. Waterjet-Hull interaction: Recent experimental results;Alexander;SNAME Trans.,1993
2. Marine waterjet propulsion;Allison;SNAME Trans.,1993
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献