Meshfree Model for Wave-Seabed Interactions Around Offshore Pipelines

Author:

Wang Xiao,Jeng Dong-Sheng,Tsai Chia-ChengORCID

Abstract

The evaluation of the wave-induced seabed instability around a submarine pipeline is particularly important for coastal engineers involved in the design of pipelines protection. Unlike previous studies, a meshfree model is developed to investigate the wave-induced soil response in the vicinity of a submarine pipeline. In the present model, Reynolds-Averaged Navier-Stokes (RANS) equations are employed to simulate the wave loading, while Biot’s consolidation equations are adopted to investigate the wave-induced soil response. Momentary liquefaction around an offshore pipeline in a trench is examined. Validation of the present seabed model was conducted by comparing with the analytical solution, experimental data, and numerical models available in the literature, which demonstrates the capacity of the present model. Based on the newly proposed model, a parametric study is carried out to investigate the influence of soil properties and wave characteristics for the soil response around the pipeline. The numerical results conclude that the liquefaction depth at the bottom of the pipeline increases with increasing water period (T) and wave height (H), but decreases as backfilled depth ( H b ), degree of saturation ( S r ) and soil permeability (K) increase.

Funder

the Ministry of Science and Technology of Taiwan under the grant

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3