Is Continuous Heart Rate Monitoring of Livestock a Dream or Is It Realistic? A Review

Author:

Nie Luwei,Berckmans DanielORCID,Wang Chaoyuan,Li BaomingORCID

Abstract

For all homoeothermic living organisms, heart rate (HR) is a core variable to control the metabolic energy production in the body, which is crucial to realize essential bodily functions. Consequently, HR monitoring is becoming increasingly important in research of farm animals, not only for production efficiency, but also for animal welfare. Real-time HR monitoring for humans has become feasible though there are still shortcomings for continuously accurate measuring. This paper is an effort to estimate whether it is realistic to get a continuous HR sensor for livestock that can be used for long term monitoring. The review provides the reported techniques to monitor HR of living organisms by emphasizing their principles, advantages, and drawbacks. Various properties and capabilities of these techniques are compared to check the potential to transfer the mostly adequate sensor technology of humans to livestock in term of application. Based upon this review, we conclude that the photoplethysmographic (PPG) technique seems feasible for implementation in livestock. Therefore, we present the contributions to overcome challenges to evolve to better solutions. Our study indicates that it is realistic today to develop a PPG sensor able to be integrated into an ear tag for mid-sized and larger farm animals for continuously and accurately monitoring their HRs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference159 articles.

1. FAOSTAT. Livestock Primaryhttp://www.fao.org/faostat/en/#data/QL

2. World Livestock 2011-Livestock in Food Security;McLeod,2011

3. Engineering advances in Precision Livestock Farming

4. Horizon 2020, Work Programme 2018–2020. Food Security, Sustainable Agriculture and Forestry, Marine, Maritime and Inland Water Research and the Bioeconomy,2018

5. Science Breakthroughs to Advance Food and Agricultural Research by 2030,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3