Healthy Ageing: A Decision-Support Algorithm for the Patient-Specific Assignment of ICT Devices and Services

Author:

Brunzini Agnese1ORCID,Caragiuli Manila1,Massera Chiara1ORCID,Mandolini Marco1ORCID

Affiliation:

1. Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy

Abstract

In response to rapid population ageing, digital technology represents the greatest resource in supporting the implementation of active and healthy ageing principles at clinical and service levels. However, digital information platforms that deliver coordinated health and social care services for older people to cover their needs comprehensively and adequately are still not widespread. The present work is part of a project that focuses on creating a new personalised healthcare and social assistance model to enhance older people’s quality of life. This model aims to prevent acute events to favour the elderly staying healthy in their own home while reducing hospitalisations. In this context, the prompt identification of criticalities and vulnerabilities through ICT devices and services is crucial. According to the human-centred care vision, this paper proposes a decision-support algorithm for the automatic and patient-specific assignment of tailored sets of devices and local services based on adults’ health and social needs. This decision-support tool, which uses a tree-like model, contains conditional control statements. Using sequences of binary divisions drives the assignation of products and services to each user. Based on many predictive factors of frailty, the algorithm aims to be efficient and time-effective. This goal is achieved by adequately combining specific features, thresholds, and constraints related to the ICT devices and patients’ characteristics. The validation was carried out on 50 participants. To test the algorithm, its output was compared to clinicians’ decisions during the multidimensional evaluation. The algorithm reported a high sensitivity (96% for fall monitoring and 93% for cardiac tracking) and a lower specificity (60% for fall monitoring and 27% for cardiac monitoring). Results highlight the preventive and protective behaviour of the algorithm.

Funder

Ministry of Enterprises and Made in Italy (ex Ministry of Economic Development) and Marche Region under the tender for Innovation Agreements

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3