Abstract
In some important berry-producing countries, such as Chile, the fruit is harvested manually. The markets for these products are generally very distant, and any damage caused to the fruit during harvesting will be expressed in its shelf life. The first step to understanding the harvesting process is to identify what happens to the harvest baskets in each stage (picking, wait-full, transport-full, freezing tunnel, emptying and transport-empty), allowing variables that can affect the shelf life to be identified. This article proposes the use of Smartbins, intelligent harvest baskets with sensors to collect weight, temperature, and vibration data. Combined analysis of the variables collected, using machine learning algorithms, allows the system to estimate which stage the basket is at with an accuracy of 80%, and to assess whether the fruit has been exposed to situations that could affect its shelf life. Due to imbalance characteristics of the data collected, the best results were obtained in longer stages (picking and wait-full stages with 89% and 86% respectively).
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Postharvest Handling Systems;Encyclopedia of Smart Agriculture Technologies;2023
2. Postharvest Handling Systems;Encyclopedia of Digital Agricultural Technologies;2023
3. Postharvest Handling Systems;Encyclopedia of Smart Agriculture Technologies;2022-11-12
4. Postharvest Handling Systems;Encyclopedia of Smart Agriculture Technologies;2022
5. Harvest Stage Recognition and Potential Fruit Damage Indicator for Berries Based on Hidden Markov Models and the Viterbi Algorithm;Sensors;2019-10-12