Co/Al Co-Substituted Layered Manganese-Based Oxide Cathode for Stable and High-Rate Potassium-Ion Batteries

Author:

Li Junxian12,Shu Wenli12,Zhang Guangwan12,Meng Jiashen1,Han Chunhua123,Wei Xiujuan4,Wang Xuanpeng1235

Affiliation:

1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

2. Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China

3. Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China

4. Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

5. Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Wuhan 430070, China

Abstract

Manganese-based layered oxides are promising cathode materials for potassium-ion batteries (PIBs) due to their low cost and high theoretical energy density. However, the Jahn-Teller effect of Mn3+ and sluggish diffusion kinetics lead to rapid electrode deterioration and a poor rate performance, greatly limiting their practical application. Here, we report a Co/Al co-substitution strategy to construct a P3-type K0.45Mn0.7Co0.2Al0.1O2 cathode material, where Co3+ and Al3+ ions occupy Mn3+ sites. This effectively suppresses the Jahn-Teller distortion and alleviates the severe phase transition during K+ intercalation/de-intercalation processes. In addition, the Co element contributes to K+ diffusion, while Al stabilizes the layer structure through strong Al-O bonds. As a result, the K0.45Mn0.7Co0.2Al0.1O2 cathode exhibits high capacities of 111 mAh g−1 and 81 mAh g−1 at 0.05 A g−1 and 1 A g−1, respectively. It also demonstrates a capacity retention of 71.6% after 500 cycles at 1 A g−1. Compared to the pristine K0.45MnO2, the K0.45Mn0.7Co0.2Al0.1O2 significantly alleviates severe phase transition, providing a more stable and effective pathway for K+ transport, as investigated by in situ X-ray diffraction. The synergistic effect of Co/Al co-substitution significantly enhances the structural stability and electrochemical performance, contributing to the development of new Mn-based cathode materials for PIBs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3