Abstract
The fault detection method has been used usually to give a diagnosis of the performance and efficiency in the proton exchange membrane fuel cell (PEMFC) systems. To be able to use this method a lot of sensors are implemented in the PEMFC to measure different parameters like pressure, temperature, voltage, and electrical current. However, despite the high reliability of the sensors, they can fail or give erroneous measurements. To address this problem, an efficient solution to replace the sensors must be found. For this reason, in this work, the immersion and invariance method is proposed to develop an oxygen pressure estimator based on the voltage, electrical current density, and temperature measurements. The estimator stability region is calculated by applying Lyapunov’s Theorem and constraints to achieve stability are established for the oxygen pressure, electrical current density, and temperature. Under these estimator requirements, oxygen pressure measurements of high reliability are obtained to fault diagnosis without the need to use an oxygen sensor.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献