Discovering Deleterious Single Nucleotide Polymorphisms of Human AKT1 Oncogene: An In Silico Study

Author:

Zhang Ruojun1,Akhtar Nahid2ORCID,Wani Atif Khurshid2,Raza Khalid3ORCID,Kaushik Vikas2ORCID

Affiliation:

1. School of Life Sciences and Technology, Tongji University, Shanghai 200092, China

2. School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India

3. Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India

Abstract

Background: AKT1 is a serine/threonine kinase necessary for the mediation of apoptosis, angiogenesis, metabolism, and cell proliferation in both normal and cancerous cells. The mutations in the AKT1 gene have been associated with different types of cancer. Further, the AKT1 gene mutations are also reported to be associated with other diseases such as Proteus syndrome and Cowden syndromes. Hence, this study aims to identify the deleterious AKT1 missense SNPs and predict their effect on the function and structure of the AKT1 protein using various computational tools. Methods: Extensive in silico approaches were applied to identify deleterious SNPs of the human AKT1 gene and assessment of their impact on the function and structure of the AKT1 protein. The association of these highly deleterious missense SNPs with different forms of cancers was also analyzed. The in silico approach can help in reducing the cost and time required to identify SNPs associated with diseases. Results: In this study, 12 highly deleterious SNPs were identified which could affect the structure and function of the AKT1 protein. Out of the 12, four SNPs—namely, G157R, G159V, G336D, and H265Y—were predicted to be located at highly conserved residues. G157R could affect the ligand binding to the AKT1 protein. Another highly deleterious SNP, R273Q, was predicted to be associated with liver cancer. Conclusions: This study can be useful for pharmacogenomics, molecular diagnosis of diseases, and developing inhibitors of the AKT1 oncogene.

Funder

Professional University

Jamia Millia Islamia

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3