Role of the Rhamnosyl Residue of Ouabain in the Activation of the Na,K-ATPase Signaling Function

Author:

Rogachevskii Ilya V.1ORCID,Samosvat Dmitriy M.2,Penniyaynen Valentina A.1ORCID,Plakhova Vera B.1ORCID,Podzorova Svetlana A.1,Ma Ke3,Zegrya Georgy G.12,Krylov Boris V.1

Affiliation:

1. Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia

2. Ioffe Institute of the Russian Academy of Sciences, 194021 Saint Petersburg, Russia

3. Department of Pain Management, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China

Abstract

The signaling or non-pumping Na,K-ATPase function was first observed by us in the nociceptive neuron; Na,K-ATPase transduced the signals from the opioid-like receptors to NaV1.8 channels. This study elucidates the role of the rhamnosyl residue of ouabain in the activation of the Na,K-ATPase signaling function. The effects resulting from activation of Na,K-ATPase signaling by the Ca2+ chelate complex of ouabain (EO) are not manifested upon removal of the rhamnosyl residue, as demonstrated in viable cells by the highly sensitive patch-clamp and organotypic cell culture methods. Docking calculations show that the rhamnosyl residue is involved in five intermolecular hydrogen bonds with the Na,K-ATPase α1-subunit, which are fundamentally important for activation of the Na,K-ATPase signaling function upon EO binding. The main contribution to the energy of EO binding is provided by its steroid core, which forms a number of hydrogen bonds and hydrophobic interactions with Na,K-ATPase that stabilize the ligand–receptor complex. Another critically important role in EO binding is expected to be played by the chelated Ca2+ cation, which should switch on strong intermolecular ionic interactions between the EO molecule and two α1-Na,K-ATPase amino acid residues, Glu116 and Glu117.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3