Developing a 3D City Digital Twin: Enhancing Walkability through a Green Pedestrian Network (GPN) in the City of Imola, Italy

Author:

Gholami MansourehORCID,Torreggiani Daniele,Tassinari Patrizia,Barbaresi AlbertoORCID

Abstract

Predominantly, dense historical cities face insufficient pedestrian-level greenery in the urban spaces. The lack of greenery impacts the human thermal comfort on the walking paths, which contributes to a considerable reduction in pedestrian flow rate. This study aims at developing a model to assess pedestrian-level thermal comfort in city environments and then evaluate the feasibility of creating a green pedestrian network (GPN). Imola, as a historical city in Italy with a compact urban pattern, is selected as the case study of this paper. To accomplish this, a three-dimensional digital twin at city scale is developed for the recognition of real-time shade patterns and for designing a GPN in this city. The 3D model of the proposed digital twin is developed in the Rhinoceros platform, and the physiological equivalence temperature (PET) is simulated through EnergyPlus, Honeybee, and Ladybug components in grasshopper. This study provides the city with a digital twin that is capable of examining pedestrian-level thermal comfort for designing a GPN based on real-time PET in the compact urban morphology of Imola. The PET model indicates that during the hottest hour of the 25th of June, pedestrians in open spaces can experience 3 °C more than on narrow shaded streets. The results are validated based on in situ datasets that prove the reliability of the developed digital twin for the GPN. It provides urban planners and policy makers with a precise and useful methodology for simulating the effects of pedestrian-level urban greenery on human thermal comfort and also guarantees the functionality of policies in different urban settings.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3