Performance Comparison of Different Particle Size Distribution Models in the Prediction of Soil Particle Size Characteristics

Author:

Zhang HaoORCID,Wang Chong,Chen Zhengyan,Kang Qingyu,Xu Xiaohua,Gao TianpengORCID

Abstract

Particle size distribution (PSD) is a rich source of information about soil properties, including soil gradation and soil particle size characteristics. This paper compared the PSD prediction ability of three types of mathematical model. We selected nine models that have been proven to accurately predict sample points in previous studies, and we fit 144 pieces of experimental data on 12 texture classes of soil samples from the UNSODA database. We compared the models’ capability for predicting non-sample points, which is important for predicting soil particle size characteristics. Each model’s ability to predict non-sample points of different texture classes of soil was studied using a comprehensive ranking method. The relative differences in the models’ prediction of non-sample points of different texture classes of soil were analyzed using the relative error method. The results showed no considerable correlation between the number of model parameters and the prediction accuracy. For the various texture classes of soil, the Skaggs model and Weipeng model had the highest accuracy in predicting non-sample points, and the Skaggs model had the widest range of application. The Zhongling model and the Weibull model were better in predicting only one texture class of soil, respectively. The Fredlund model, Kolve model, Rosin model, Van Genuchten model and Best model were not as successful as other models. The Weipeng model overestimated the solid particle mass proportion, while the Skaggs model underestimated it when the clay particle content was greater than 20%. Both the Weipeng model and the Skaggs model demonstrated good prediction accuracy when the particle size was within the silt particle size range. The Skaggs model overestimated the particle mass proportion, while the Weipeng model underestimated it when the particle size was within the sand particle size range.

Funder

the National Natural Science Foundation of China

the Distinguished Youth Foundation of Gansu Province

the Construction of Science and Technology Project of Gansu Province

the Fundamental Research Foundations for the Central Universities

the Foundation of State Key Laboratory of Frozen Soil Engineering

the Key Research & Development Program of Gansu

the Key Research & Development Program of Shaanxi

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3