A Hybrid Multimodal Emotion Recognition Framework for UX Evaluation Using Generalized Mixture Functions

Author:

Razzaq Muhammad Asif12ORCID,Hussain Jamil3ORCID,Bang Jaehun4ORCID,Hua Cam-Hao2ORCID,Satti Fahad Ahmed25ORCID,Rehman Ubaid Ur25ORCID,Bilal Hafiz Syed Muhammad5ORCID,Kim Seong Tae2ORCID,Lee Sungyoung2ORCID

Affiliation:

1. Department of Computer Science, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan

2. Ubiquitous Computing Lab, Department of Computer Science and Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si 17104, Republic of Korea

3. Department of Data Science, Sejong University, Seoul 30019, Republic of Korea

4. Hanwha Corporation/Momentum, Hanwha Building, 86 Cheonggyecheon-ro, Jung-gu, Seoul 04541, Republic of Korea

5. Department of Computing, School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

Abstract

Multimodal emotion recognition has gained much traction in the field of affective computing, human–computer interaction (HCI), artificial intelligence (AI), and user experience (UX). There is growing demand to automate analysis of user emotion towards HCI, AI, and UX evaluation applications for providing affective services. Emotions are increasingly being used, obtained through the videos, audio, text or physiological signals. This has led to process emotions from multiple modalities, usually combined through ensemble-based systems with static weights. Due to numerous limitations like missing modality data, inter-class variations, and intra-class similarities, an effective weighting scheme is thus required to improve the aforementioned discrimination between modalities. This article takes into account the importance of difference between multiple modalities and assigns dynamic weights to them by adapting a more efficient combination process with the application of generalized mixture (GM) functions. Therefore, we present a hybrid multimodal emotion recognition (H-MMER) framework using multi-view learning approach for unimodal emotion recognition and introducing multimodal feature fusion level, and decision level fusion using GM functions. In an experimental study, we evaluated the ability of our proposed framework to model a set of four different emotional states (Happiness, Neutral, Sadness, and Anger) and found that most of them can be modeled well with significantly high accuracy using GM functions. The experiment shows that the proposed framework can model emotional states with an average accuracy of 98.19% and indicates significant gain in terms of performance in contrast to traditional approaches. The overall evaluation results indicate that we can identify emotional states with high accuracy and increase the robustness of an emotion classification system required for UX measurement.

Funder

Institute of Information & communications Technology Planning & Evaluation

Lean UX core technology and platform for any digital artifacts UX evaluation

Grand Information Technology Research Center support program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3