Author:
Vangal Sriram,Paul Somnath,Hsu Steven,Agarwal Amit,Krishnamurthy Ram,Tschanz James,De Vivek
Abstract
Aggressive power supply scaling into the near-threshold voltage (NTV) region holds great potential for applications with strict energy budgets, since the energy efficiency peaks as the supply voltage approaches the threshold voltage (VT) of the CMOS transistors. The improved silicon energy efficiency promises to fit more cores in a given power envelope. As a result, many-core Near-threshold computing (NTC) has emerged as an attractive paradigm. Realizing energy-efficient heterogenous system on chips (SoCs) necessitates key NTV-optimized ingredients, recipes and IP blocks; including CPUs, graphic vector engines, interconnect fabrics and mm-scale microcontroller (MCU) designs. We discuss application of NTV design techniques, necessary for reliable operation over a wide supply voltage range—from nominal down to the NTV regime, and for a variety of IPs. Evaluation results spanning Intel’s 32-, 22- and 14-nm CMOS technologies across four test chips are presented, confirming substantial energy benefits that scale well with Moore’s law.
Subject
Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献