Validation of Two Theoretically Derived Equations for Predicting pH in CO2 Biomethanisation

Author:

Zhang YueORCID,Heaven SoniaORCID,Banks Charles J.ORCID

Abstract

CO2 biomethanisation is a rapidly emerging technology which can contribute to reducing greenhouse gas emissions through the more sustainable use of organic feedstocks. The major technical limitation for in situ systems is that the reaction causes CO2 depletion which drives up pH, potentially leading to instability and even digestion failure. The study aimed to test fundamentally derived predictive equations as tools to manage H2 addition to anaerobic digesters. The methodology used data from the literature and from experimental digesters operated with excess H2 to a point of failure and subsequent recovery. Two equations were tested: the first relating pH to CO2 partial pressure (pCO2), and the second extending this to include the influence of volatile fatty acids and ammonia. The first equation gave good agreement for data from studies covering a wide range of operating conditions and digester types. Where agreement was not good, this could usually be explained, and in some cases improved, using the second equation, which also showed excellent predictive performance in the experimental study. The results validated the derived equations and identified typical coefficient values for some organic feedstocks. Both equations could provide a basis for process control of CO2 biomethanisation using routine monitoring of pH or pCO2 with additional analysis for volatile fatty acids and total ammonia nitrogen when required.

Funder

Engineering and Physical Sciences Research Council

Carbon Recycling Network

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3