Novel Semisynthetic Betulinic Acid−Triazole Hybrids with In Vitro Antiproliferative Potential

Author:

Nistor Gabriela,Mioc Alexandra,Mioc Marius,Balan-Porcarasu MihaelaORCID,Ghiulai Roxana,Racoviceanu RoxanaORCID,Avram ȘtefanaORCID,Prodea AlexandraORCID,Semenescu AlexandraORCID,Milan AndreeaORCID,Dehelean Cristina,Șoica Codruța

Abstract

Betulinic acid, BA, is a lupane derivative that has caught the interest of researchers due to the wide variety of pharmacological properties it exhibits towards tumor cells. Because of their prospective increased anti−proliferative efficacy and improved pharmacological profile, BA derivatives continue to be described in the scientific literature. The current work was conducted in order to determine the antiproliferative activity, under an in vitro environment of the newly developed 1,2,4−triazole derivatives of BA. The compounds and their reaction intermediates were tested on three cancer cell lines, namely RPMI−7951 human malignant melanoma, HT−29 colorectal adenocarcinoma, A549 lung carcinoma, and healthy cell line (HaCaT human keratinocytes). BA−triazole derivatives 4a and 4b revealed lower IC50 values in almost all cases when compared to their precursors, exhibiting the highest cytotoxicity against the RPMI−7951 cell line (IC50: 18.8 μM for 4a and 20.7 μM for 4b). Further biological assessment of these compounds executed on the most affected cell line revealed a mitochondrial level induced apoptotic mechanism where both compounds inhibited mitochondrial respiration in RPMI−7951 cells. Furthermore, the triazole−BA derivatives caused a significant decrease of the anti−apoptotic Bcl−2 gene expression, while increasing the pro−apoptotic BAX gene’s expression.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Victor Babeș University of Medicine and Pharmacy Timișoara

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3