Research on Gas Concentration Prediction Based on the ARIMA-LSTM Combination Model

Author:

Li Chuan,Fang Xinqiu,Yan ZhenguoORCID,Huang Yuxin,Liang Minfu

Abstract

The current single gas prediction model is not sufficient for identifying and processing all the characteristics of mine gas concentration time series data. This paper proposes an ARIMA-LSTM combined forecasting model based on the autoregressive integrated moving average (ARIMA) model and the long short-term memory (LSTM) recurrent neural network. In the ARIMA-LSTM model, the ARIMA model is used to process the historical data of gas time series and obtain the corresponding linear prediction results and residual series. The LSTM model is used in further analysis of the residual series, predicting the nonlinear factors in the residual series. The prediction results of the combined model are compared separately with those of the two single models. Finally, RMSE, MAPE and R2 are used to evaluate the prediction accuracy of the three models. The results of the study show that the metrics of the combined ARIMA-LSTM model are R2 = 0.9825, MAPE = 0.0124 and RMSE = 0.083. The combined model has the highest prediction accuracy and the lowest error and is more suitable for the predictive analysis of gas data. By comparing the prediction results of a single model and the combined model on gas time series data, the applicability, validity and scientificity of the combined model proposed in this paper are verified, which is of great importance to accurate prediction and early warning of underground gas danger in coal mines.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3