Optimization of Urban Rail Automatic Train Operation System Based on RBF Neural Network Adaptive Terminal Sliding Mode Fault Tolerant Control

Author:

Yang Junxia,Zhang Youpeng,Jin Yuxiang

Abstract

Aiming at the problem of the large tracking error of the desired curve for the automatic train operation (ATO) control strategy, an ATO control algorithm based on RBF neural network adaptive terminal sliding mode fault-tolerant control (ATSM-FTC-RBFNN) is proposed to realize the accurate tracking control of train operation curve. On the one hand, considering the state delay of trains in operation, a nonlinear dynamic model is established based on the mechanism of motion mechanics. Then, the terminal sliding mode control principle is used to design the ATO control algorithm, and the adaptive mechanism is introduced to enhance the adaptability of the system. On the other hand, RBFNN is used to adaptively approximate and compensate the additional resistance disturbance to the model so that ATO control with larger disturbance can be realized with smaller switching gain, and the tracking performance and anti-interference ability of the system can be enhanced. Finally, considering the actuator failure and the control input limitation, the fault-tolerant mechanism is introduced to further enhance the fault-tolerant performance of the system. The simulation results show that the control can compensate and process the nonlinear effects of control input saturation, delay, and actuator faults synchronously under the condition of uncertain parameters, external disturbances of the system model and can achieve a small error tracking the desired curve.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Reference38 articles.

1. Rail train operation control system based on communication;Gao;Mod. Urban Transit.,2007

2. Study on ATO braking model identification based on model selection and optimization techniques;Gao;J. China Railw. Soc.,2011

3. Research and development of automatic train operation for railway transportation systems: A survey

4. Extended fuzzy logic controller for high speed train

5. Research on automatic train operation based on model-free adaptive control;Shi;J. China Railw. Soc.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3