Contamination and Ecological Risk Evaluation of Metals in Sediments from a Wetland of International Importance (Ramsar Site)

Author:

Ahmed Md. Moudud1,Nur As-Ad Ujjaman1ORCID,Jolly Yeasmin N.2,Islam Md. Rakeb Ul1ORCID,Rahman Mohammad Saifur1,Akter Shirin2,Yu Jimmy3,Albeshr Mohammed Fahad4,Arai Takaomi5ORCID,Hossain Mohammad Belal13ORCID

Affiliation:

1. Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh

2. Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka 1000, Bangladesh

3. School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia

4. Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

5. Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam

Abstract

Wetlands are highly productive and diverse ecosystems providing home to thousands of organisms. These ecosystems reduce water pollution, sequester carbon, support livelihoods, and increase food security. However, these ecological functions are being impeded due to increased levels of metals in the environment. Therefore, the primary objective of this study was to evaluate the degree of metal contamination in the surface sediment of a wetland, Tanguar Haor, for the first time. The result demonstrated that the mean concentrations of Fe, Cu, Zn, As, Pb and Hg varied from 13140.39 to 45675, 40.07 to 46.29, 47.60 to 57.15, 18.89 to 35.23, 1.24 to 2.64, and 0.35 to 0.42, respectively. The concentration of As was found to be higher than the average shale value. The concentration of Cu (44.19 μg/g) and Hg (0.38 μ/g) was very close to the shale value (45 μg/g and 0.40 μg/g, respectively), indicating a moderate level of contamination. The contamination level was further evaluated by multi-indices, e.g., the contamination factor (CF), the enrichment factor (EF), and the geo-accumulation index (Igeo). The average EF values for As (115.41), Cu (57.68), and Hg (55.47) were >50, indicating a high degree of contamination (extremely severe enrichment). However, CF values showed varied levels of pollution; for example, the majority of the area was only somewhat contaminated with As, Cu, and Hg, but less contaminated with Fe, Zn, and Pb. According to Igeo, sampling sites were found to be unpolluted or less polluted by heavy metals. Based on potential ecological risk assessment (PERI), the degree of risk from the six heavy metals decreased in the following sequence: As > Cu > Zn > Pb > Cr > Ni. PERI values indicated the study area has been exposed to moderate risk to As and low risk to other metals. This study provides an opportunity for frequent monitoring of heavy metals in this ecologically critical environment, and thus curbing heavy metal pollution.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3