Study on Secondary Brine Drainage and Sand Control Technology of Salt Cavern Gas Storage

Author:

Zhang Yi1,Zhang Kun2,Li Jun1,Luo Yang3,Ran Li-Na1,Sheng Lian-Qi2,Yao Er-Dong2ORCID

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

3. Shixi Field Operation District, PetroChina, Xinjiang Oilfield Company, Karamay 834000, China

Abstract

Geological conditions of salt cavern gas storage in China are characterized by dominantly layered salt layers with a high content of insoluble mudstone. After the water leaching of the salt layer, a large amount of sediment accumulates at the bottom of the gas storage cavity. During the gas injection process, only the clean brine above the sediment can be expelled, leaving a brine layer of 2–5 m and a large amount of brine in the pore space of the sediment. To increase storage capacity, it is urgent to explore the secondary gas injection and brine drainage technology to further expel residual brine in pores of the sediment at the cavern bottom. The sediment is relatively loosely packed and is composed of mudstone particles, which easily migrate and block the brine withdrawal pipe. In this paper, firstly, the mineral composition, particle size and distribution characteristics of the sediment at the bottom of the salt cavern are fully understood by XRD and sieve analysis methods. Then, a lab simulation device suitable for secondary gas injection and brine drainage of a high-salinity salt cavern with a diameter and height of 25 cm was designed and built. A screen sand control experiment, a gravel pack artificial wall sand control experiment and chemical cementing sand were simulated. The effects of gas injection, brine drainage pressure, brine layer height and insoluble particle size on sand production and liquid drainage were studied. The influence factors of brine withdrawal on the sand control in secondary brine drainage were intensively investigated, and finally, the gravel pack artificial wall sand control technology system was recommended. The optimal construction parameters for secondary brine discharge are recommended as follows: Under the condition of gravel packing with the same particle size, the trend of sand content with different artificial wall thicknesses is not obvious, and a 2 cm wall thickness is the best in the overall experiment, corresponding to 28 cm in the field. The larger the particle size of the gravel pack, the better the sand control, and the best gravel size is 10–20 mesh. The injection pressure should be as low as possible.

Funder

National Natural Science Foundation of China

Strategic Cooperation Technology Projects of CNPC and CUPB

National Science and Technology Major Projects of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3