Author:
Wang Huixia,Xing Yan,Yang Jia,Xie Binze,Shi Hui,Wang Yanhui
Abstract
Particulate matter (PM) in different size fractions (PM0.1–2.5, PM2.5–10 and PM>10) accumulation on four tree species (Populus tomentosa, Platanus acerifolia, Fraxinus chinensis, and Ginkgo biloba) at two sites with different pollution levels was examined in Beijing, China. Among the tested tree species, P. acerifolia was the most efficient species in capturing PM, followed by F. chinensis, G. biloba, and P. tomentosa. The heavily polluted site had higher PM accumulation on foliage and a higher percentage of PM0.1–2.5 and PM2.5–10. Encapsulation of PM within cuticles was observed on leaves of F. chinensis and G. biloba, which was further dominated by PM2.5. Leaf surface structure explains the considerable differences in PM accumulation among tree species. The amounts of accumulated PM (PM0.1–2.5, PM2.5–10, and PM>10) increased with the increase of stomatal aperture, stomatal width, leaf length, leaf width, and stomatal density, but decreases with contact angle. Considering PM accumulation ability, leaf area index, and tolerance to pollutants in urban areas, we suggest P. acerifolia should be used more frequently in urban areas, especially in “hotspots” in city centers (e.g., roads/streets with heavy traffic loads). However, G. biloba and P. tomentosa should be installed in less polluted areas.
Funder
the Scientific Research Program of the Education Department of Shaanxi Provincial Government
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献