Improved YOLOv8-Based Target Precision Detection Algorithm for Train Wheel Tread Defects

Author:

Wen Yu1,Gao Xiaorong1,Luo Lin1,Li Jinlong1ORCID

Affiliation:

1. School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China

Abstract

Train wheels are crucial components for ensuring the safety of trains. The accurate and fast identification of wheel tread defects is necessary for the timely maintenance of wheels, which is essential for achieving the premise of conditional repair. Image-based detection methods are commonly used for detecting tread defects, but they still have issues with the misdetection of water stains and the leaking of small defects. In this paper, we address the challenges posed by the detection of wheel tread defects by proposing improvements to the YOLOv8 model. Firstly, the impact of water stains on tread defect detection is avoided by optimising the structure of the detection layer. Secondly, an improved SPPCSPC module is introduced to enhance the detection of small targets. Finally, the SIoU loss function is used to accelerate the convergence speed of the network, which ensures defect recognition accuracy with high operational efficiency. Validation was performed on the constructed tread defect dataset. The results demonstrate that the enhanced YOLOv8 model in this paper outperforms the original network and significantly improves the tread defect detection indexes. The average precision, accuracy, and recall reached 96.95%, 96.30%, and 95.31%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3