The Emerging Physiological Role of AGMO 10 Years after Its Gene Identification

Author:

Sailer Sabrina,Keller Markus A.,Werner Ernst R.,Watschinger KatrinORCID

Abstract

The gene encoding alkylglycerol monooxygenase (AGMO) was assigned 10 years ago. So far, AGMO is the only known enzyme capable of catalysing the breakdown of alkylglycerols and lyso-alkylglycerophospholipids. With the knowledge of the genetic information, it was possible to relate a potential contribution for mutations in the AGMO locus to human diseases by genome-wide association studies. A possible role for AGMO was implicated by genetic analyses in a variety of human pathologies such as type 2 diabetes, neurodevelopmental disorders, cancer, and immune defence. Deficient catabolism of stored lipids carrying an alkyl bond by an absence of AGMO was shown to impact on the overall lipid composition also outside the ether lipid pool. This review focuses on the current evidence of AGMO in human diseases and summarises experimental evidence for its role in immunity, energy homeostasis, and development in humans and several model organisms. With the progress in lipidomics platform and genetic identification of enzymes involved in ether lipid metabolism such as AGMO, it is now possible to study the consequence of gene ablation on the global lipid pool and further on certain signalling cascades in a variety of model organisms in more detail.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3