Evaluation of the Prediction and Durability on the Chloride Penetration in Cementitious Materials with Blast Furnace Slag as Cement Addition

Author:

Subpa-asa Prang,Nito Nobukazu,Fujiwara Satoshi,Date Shigeyuki

Abstract

Blast furnace slag (BFS) is a mortar additive in which the utilization of varied curing conditions and the basicity of BFS determine the fineness of the resulting mortar and, thereby, its salt prevention properties. This study evaluates and compares the salt-prevention properties of mortar prepared by either steam curing or water curing. The physical properties, for example, the BFS fineness, revealed the factors significantly affected by basicity that influence the salt-preventive properties of mortar in the specimens examined, such as the lead time and diffusion coefficient. Furthermore, these factors were also significantly affected by differences in curing conditions and other physical properties. However, few studies have examined its use in reducing chloride ion permeability as the main factor of corrosion reactions. Thus, this study evaluates specific surface, water/binder ratio (W/B), and curing conditions on the chloride penetration in cementitious materials with blast furnace slag as cement addition in terms of delaying chloride ion penetration, which affects corrosion reactions. Results of the study are intended to guide development of products for use in the precast concrete industry, toward extending the life of concrete structures, especially reinforced concrete structures in marine environments. In addition, the resulting durability measurements from the experiment conducted are illustrated. This study indicates that differences in Blaine size properties significantly influence water curing. Furthermore, results reveal the effects of combining BFS with various Blaine values and ratio-affecting properties on mortar. In conclusion, concrete materials that decrease durability against chloride attack and improve mechanical properties for precast manufacturer industrial applications are successfully developed in this study. In addition, the use of water-curing conditions, high Blaine value, high cement replacement ratio, and W/B tend to improve the general mechanical property performance and durability against chloride ion attack.

Publisher

MDPI AG

Subject

General Engineering

Reference25 articles.

1. Towards sustainable concrete

2. Corrosion Effects on the Durability of Reinforced Concrete Structures;Larsen;Mater. Perform.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3