Combining Ergonomic Risk Assessment (RULA) with Inertial Motion Capture Technology in Dentistry—Using the Benefits from Two Worlds

Author:

Maurer-Grubinger Christian,Holzgreve FabianORCID,Fraeulin LauraORCID,Betz Werner,Erbe Christina,Brueggmann Doerthe,Wanke Eileen M.,Nienhaus Albert,Groneberg David A.,Ohlendorf Daniela

Abstract

Traditional ergonomic risk assessment tools such as the Rapid Upper Limb Assessment (RULA) are often not sensitive enough to evaluate well-optimized work routines. An implementation of kinematic data captured by inertial sensors is applied to compare two work routines in dentistry. The surgical dental treatment was performed in two different conditions, which were recorded by means of inertial sensors (Xsens MVN Link). For this purpose, 15 (12 males/3 females) oral and maxillofacial surgeons took part in the study. Data were post processed with costume written MATLAB® routines, including a full implementation of RULA (slightly adjusted to dentistry). For an in-depth comparison, five newly introduced levels of complexity of the RULA analysis were applied, i.e., from lowest complexity to highest: (1) RULA score, (2) relative RULA score distribution, (3) RULA steps score, (4) relative RULA steps score occurrence, and (5) relative angle distribution. With increasing complexity, the number of variables times (the number of resolvable units per variable) increased. In our example, only significant differences between the treatment concepts were observed at levels that are more complex: the relative RULA step score occurrence and the relative angle distribution (level 4 + 5). With the presented approach, an objective and detailed ergonomic analysis is possible. The data-driven approach adds significant additional context to the RULA score evaluation. The presented method captures data, evaluates the full task cycle, and allows different levels of analysis. These points are a clear benefit to a standard, manual assessment of one main body position during a working task.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3