An Access Control System Based on Blockchain with Zero-Knowledge Rollups in High-Traffic IoT Environments

Author:

Lin Xin1,Zhang Yuanyuan1,Huang Changhai2,Xing Bin34,Chen Liangyin15ORCID,Hu Dasha1,Chen Yanru1

Affiliation:

1. School of Computer Science, Sichuan University, Chengdu 610065, China

2. Sichuan GreatWall Computer System Co., Ltd., Luzhou 646000, China

3. Chongqing Innovation Center of Industrial Big-Data Co., Ltd., Chongqing 400707, China

4. National Engineering Laboratory for Industrial Big-Data Application Technology, Beijing 100040, China

5. Institute for Industrial Internet Research, Sichuan University, Chengdu 610065, China

Abstract

The access control (AC) system in an IoT (Internet of Things) context ensures that only authorized entities have access to specific devices and that the authorization procedure is based on pre-established rules. Recently, blockchain-based AC systems have gained attention within research as a potential solution to the single point of failure issue that centralized architectures may bring. Moreover, zero-knowledge proof (ZKP) technology is included in blockchain-based AC systems to address the issue of sensitive data leaking. However, current solutions have two problems: (1) systems built by these works are not adaptive to high-traffic IoT environments because of low transactions per second (TPS) and high latency; (2) these works cannot fully guarantee that all user behaviors are honest. In this work, we propose a blockchain-based AC system with zero-knowledge rollups to address the aforementioned issues. Our proposed system implements zero-knowledge rollups (ZK-rollups) of access control, where different AC authorization requests can be grouped into the same batch to generate a uniform ZKP, which is designed specifically to guarantee that participants can be trusted. In low-traffic environments, sufficient experiments show that the proposed system has the least AC authorization time cost compared to existing works. In high-traffic environments, we further prove that based on the ZK-rollups optimization, the proposed system can reduce the authorization time overhead by 86%. Furthermore, the security analysis is presented to show the system’s ability to prevent malicious behaviors.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Luzhou Science and Technology Innovation R&D Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards accountable and privacy-preserving blockchain-based access control for data sharing;Journal of Information Security and Applications;2024-09

2. Scalable Anonymous Authentication Scheme Based on Zero-Knowledge Set-Membership Proof;Distributed Ledger Technologies: Research and Practice;2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3