ID2SBVR: A Method for Extracting Business Vocabulary and Rules from an Informal Document

Author:

Tangkawarow IreneORCID,Sarno Riyanarto,Siahaan DanielORCID

Abstract

Semantics of Business Vocabulary and Rules (SBVR) is a standard that is applied in describing business knowledge in the form of controlled natural language. Business process designers develop SBVR from formal documents and later translate it into business process models. In many immature companies, these documents are often unavailable and could hinder resource efficiency efforts. This study introduced a novel approach called informal document to SBVR (ID2SBVR). This approach is used to extract operational rules of SBVR from informal documents. ID2SBVR mines fact type candidates using word patterns or extracting triplets (actor, action, and object) from sentences. A candidate fact type can be a complex, compound, or complex-compound sentence. ID2SBVR extracts fact types from candidate fact types and transforms them into a set of SBVR operational rules. The experimental results show that our approach can be used to generate the operational rules of SBVR from informal documents with an accuracy of 0.91. Moreover, ID2SBVR can also be used to extract fact types with an accuracy of 0.96. The unstructured data is successfully converted into semi-structured data for use in pre-processing. ID2SBVR allows the designer to automatically generate business process models from informal documents.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference46 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State of the Art: Automatic Generation of Business Process Models;Lecture Notes in Business Information Processing;2024

2. RClassify: Combining NLP and ML to Classify Rules from Requirements Specifications Documents;2023 IEEE 31st International Requirements Engineering Conference (RE);2023-09

3. Structural Similarity Assessment of Business Process Graph Using GED-Greedy;2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE);2023-08-25

4. Automated Business Rules Classification Using Machine Learning to Enhance Software Requirements Elicitation;2023 International Conference on Information Technology (ICIT);2023-08-09

5. A Proposed Technique for Business Process Modeling Diagram Using Natural Language Processing;2023 International Conference on Information Technology (ICIT);2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3