Abstract
Data is the lifeblood of any organization. In today’s world, organizations recognize the vital role of data in modern business intelligence systems for making meaningful decisions and staying competitive in the field. Efficient and optimal data analytics provides a competitive edge to its performance and services. Major organizations generate, collect and process vast amounts of data, falling under the category of big data. Managing and analyzing the sheer volume and variety of big data is a cumbersome process. At the same time, proper utilization of the vast collection of an organization’s information can generate meaningful insights into business tactics. In this regard, two of the popular data management systems in the area of big data analytics (i.e., data warehouse and data lake) act as platforms to accumulate the big data generated and used by organizations. Although seemingly similar, both of them differ in terms of their characteristics and applications. This article presents a detailed overview of the roles of data warehouses and data lakes in modern enterprise data management. We detail the definitions, characteristics and related works for the respective data management frameworks. Furthermore, we explain the architecture and design considerations of the current state of the art. Finally, we provide a perspective on the challenges and promising research directions for the future.
Subject
Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems
Reference108 articles.
1. Big data analytics: A survey;Tsai;J. Big Data,2015
2. Big Data—Statistics & Facts. 2022.
3. Wise, J. Big Data Statistics 2022: Facts, Market Size & Industry Growth. 2022.
4. Jain, A. The 5 V’s of Big Data. 2022.
5. Beyond the hype: Big data concepts, methods, and analytics;Gandomi;Int. J. Inf. Manag.,2015
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献