Multi-Objective Spatial Suitability Evaluation and Conflict Optimization Considering Productivity, Sustainability, and Livability in Southwestern Mountainous Areas of China

Author:

Fang Yishu,Ai Dong,Yang Yuting,Sun Weijian,Zu Jian

Abstract

Space is the fundamental carrier for production, living, and ecological activities, and optimizing the spatial pattern is of vital importance to promote regional sustainable development. To achieve this goal, the core issues are to identify the risks of resource and environmental constraints of development and to realize the rational distribution of human living space. Based on the integration of multisource heterogeneous data, taking Yunnan Province, a typical mountainous area in China, as an example, this research proposes a multi-object suitability evaluation method based on 50 × 50 m grid data at the provincial scale. We build a spatial conflict analysis model to identify production–living–ecological space (PLES) and propose governance suggestions for different functional areas. The results show that (1) areas suitable for ecology make up the greatest proportion of Yunnan Province, but areas with living and ecological functions show obvious spatial complementarity; (2) areas suitable for production are restricted by steep slope, geological hazards and fragmented pattern; (3) areas suitable for living is rare, and they are mainly concentrated in the plains of central Yunnan; and (4) twenty-seven percent of area has potential spatial conflicts, among which 4.38% of the area is all suitable for production–living–ecological. The production–living advantage areas are concentrated in the central Yunnan UA (Urban agglomeration), which has a high spatial overlap. These results are expected to provide valuable insights to support comprehensive multifunctional spatial utilization and sustainable development in mountainous areas.

Funder

Yunnan Provincial Department of Finance

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3