Firing Parameters Effect on the Physical and Mechanical Properties of Scheelite Tailings-Containing Ceramic Masses

Author:

Carreiro Marcos Emmanuel AraújoORCID,da Silva Valmir José,Rodrigues Alisson MendesORCID,Barbosa Ester Pires de Almeida,da Costa Fabiana PereiraORCID,Menezes Romualdo RodriguesORCID,Neves Gelmires AraújoORCID,Santana Lisiane Navarro de Lima

Abstract

The firing parameters in ceramic masses incorporated with 0, 5, and 10 wt% of scheelite tailings were investigated. The ceramic masses were characterized by X-ray fluorescence, granulometric, mineralogical analysis, and Atterberg limits determination. The samples were obtained by uniaxial pressing (20 MPa), sintered at different temperatures (800, 900, and 1000 °C), and heating rates (5, 10, 15, and 20 °C∙min−1). Physical and mechanical tests (water absorption, apparent porosity, and flexural strength) and mineralogical tests were accomplished from the sintered samples. Natural aging tests were also carried out to assess carbonation resistance. For this, some samples were kept in an internal environment (inside the laboratory) for 3 months. The results showed a high content of calcium oxide in the scheelite tailings and a reduction in the plasticity index of the ceramic masses with the tailings addition. The best results were observed for the ceramic mass with 5% tailings. The best results were observed regarding the firing parameters for the temperature equal to 1000 °C, increasing the heating rate to 10 °C∙min−1 without compromising the material properties. The samples kept in an internal environment for 3 months showed a loss of physical and mechanical properties. Such behavior probably occurred due to the onset of the carbonation phenomenon.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3