Life Cycle Assessment of Cross-Laminated Timber Transportation from Three Origin Points

Author:

Hemmati Mahboobeh,Messadi Tahar,Gu HongmeiORCID

Abstract

Cross-laminated timber (CLT) used in the U.S. is mainly imported from abroad. In the existing literature, however, there are data on domestic transportation, but little understanding exists about the environmental impacts from the CLT import. Most studies use travel distances to the site based on domestic supply origins. The new Adohi Hall building at the University of Arkansas campus, Fayetteville, AR, presents the opportunity to address the multimodal transportation with overseas origin, and to use real data gathered from transporters and manufacturers. The comparison targets the environmental impacts of CLT from an overseas transportation route (Austria-Fayetteville, AR) to two other local transportation lines. The global warming potential (GWP) impact, from various transportation systems, constitutes the assessment metric. The findings demonstrate that transportation by water results in the least greenhouse gas (GHG) emission compared with freight transportation by rail and road. Transportation by rail is the second most efficient, and by road the least environmentally efficient. On the other hand, the comparison of the life cycle assessment (LCA) tools, SimaPro (Ecoinvent database) and Tally (GaBi database), used in this research, indicate a remarkable difference in GWP characterization impact factors per tonne.km (tkm), primarily due to the different database used by each software.

Funder

United States Department of Agriculture

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference42 articles.

1. AIA Guide to Building Life Cycle Assessment in Practice;Bayer,2010

2. Directorate of Sustainable Energy Policy,2013

3. Buildings: Investing in energy and resource efficiency Book section;Rode,2011

4. Overview and Main Findings for the Austrian Case Study

5. Comparative life-cycle assessment of a mass timber building and concrete alternative

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3