Risk-Averse Co-Decision for Lower-Carbon Product Family Configuration and Resilient Supplier Selection

Author:

Liu Dengzhuo,Li Zhongkai,He Chao,Wang Shuai

Abstract

Due to global pandemics, political unrest and natural disasters, the stability of the supply chain is facing the challenge of more uncertain events. Although many scholars have conducted research on improving the resilience of the supply chain, the research on integrating product family configuration and supplier selection (PCSS) under disruption risks is limited. In this paper, the centralized supply chain network, which contains only one major manufacturer and several suppliers, is considered, and one resilience strategy (i.e., the fortified supplier) is used to enhance the resilience level of the selected supply base. Then, an improved stochastic bi-objective mixed integer programming model is proposed to support co-decision for PCSS under disruption risks. Furthermore, considering the above risk-neutral model as a benchmark, a risk-averse mixed integer program with Conditional Value-at-Risk (CVaR) is formulated to achieve maximum potential worst-case profit and minimum expected total greenhouse gases (GHG) emissions. Then, NSGA-II is applied to solve the proposed stochastic bi-objective mixed integer programming model. Taking the electronic dictionary as a case study, the risk-neutral solutions and risk-averse solutions that optimize, respectively, average and worst-case objectives of co-decision are also compared under two different ranges of disruption probability. The sensitivity analysis on the confidence level indicates that fortifying suppliers and controlling market share in co-decision for PCSS can effectively reduce the risk of low-profit/high-cost while minimizing the expected GHG emissions. Meanwhile, the effects of low-probability risk are more likely to be ignored in the risk-neutral solution, and it is necessary to adopt a risk-averse solution to reduce potential worst-case losses.

Funder

the National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Education Institutions of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3